Grain Size Control of Calcined SnO2 Nanocrystals: Raman Study and Room Temperature Ethanol Sensing Properties

$113.00 plus tax (Refund Policy)

Buy Article:


SnO2 nanoparticles were prepared via a sol–gel method by heating the mixture of hydrous SnO2 nanoparticles and SiO2 nanospheres at 600 °C. The average particle size of the obtained SnO2 nanoparticles is 3.3 nm, smaller than that of the SnO2 nanoparticles (∼6.4 nm) prepared by calcining the pure hydrous SnO2 at 600 °C. The restricting effect of SiO2 on the growth of SnO2 nanoparticles was discussed by Raman spectra. A blue shift of A1g and B2g Raman modes in SnO2/SiO2 composite was observed, and it was considered to be a compressive stress effect. The obtained SnO2 nanoparticles with a size of about 3.3 nm exhibit enhanced ethanol response at room temperature, and their recovery time is much shorter than that of the SnO2 nanocrystals with a size of about 6.4 nm.


Document Type: Research Article


Publication date: April 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more