Skip to main content

Functional Copolymer/Organo-MMT Nanoarchitectures. VI. Synthesis and Characterization of Novel Nanocomposites by Interlamellar Controlled/Living Radical Copolymerization via Preintercalated RAFT-Agent/Organoclay Complexes

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organomontmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(α,α′-dimethyl-α″-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT…O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT…O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure–composition–property relations show that the functional copolymer–organoclay hybrids prepared with reactive RAFT…ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine of MMT clay in interlamellar copolymerization. This simple and versatile method can be applied to a wide range of functional monomer/comonomer systems and mono- and bifunctional RAFT compounds for preparation new generation of nanomaterials.

Keywords: FUNCTIONAL MONOMERS; INTERLAMELLAR RAFT COPOLYMERIZATION; MORPHOLOGY; NANOCOMPOSITES; NANOSTRUCTURES; ORGANOCLAYS; RAFT COMPLEXES; THERMAL BEHAVIOR

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.3755

Publication date: 2011-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more