Skip to main content

Effects of N Precursor on the Agglomeration and Visible Light Photocatalytic Activity of N-Doped TiO2 Nanocrystalline Powder

Buy Article:

$113.00 plus tax (Refund Policy)


N-doped TiO2 nanocrystalline powders were prepared by the sol–gel method using various N precursors, including triethylamine, hydrazine hydrate, ethylenediamine, ammonium hydroxide, and urea. The samples were characterized by X-ray diffraction, N2 adsorption isotherms, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of as-prepared samples under irradiation of visible light ( > 405 nm) were evaluated by photodecomposition of methyl orange. The alkalinity of N precursor was found to play a key role in the gel process. The N precursor with moderate alkalinity causes TiO2 nanoparticles to be sol-transformed into a loosely agglomerated gel. This transformation facilitates the preparation of an N-doped TiO2 powder with small nanocrystal size, large specific surface area, and high N doping level and results in high visible light photocatalytic activity. The N in TiO2 with N 1s binding energy at 399–400 eV may be assigned to the N-H species located in interstitial sites of TiO2 lattice which is the active N species responsible for the visible light photocatalytic activity. The N species of N 1s peak at ∼402 and ∼405 eV are ineffective to the visible light photocatalytic activity and may inhibit the photocatalytic activity. Moreover, a TiO2 nanoparticle powder with large specific area can be achieved by using urea as a template and then by using ammonium hydroxide to transform the sol into gel.


Document Type: Research Article


Publication date: April 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more