Determination of Cu2+ Using Poly(2-aminothiazole)/Multi-Walled Carbon Nanotubes Composite Film Modified Glassy Carbon Electrodes

$113.00 plus tax (Refund Policy)

Buy Article:


2-Aminothiazole was electropolymerized by cyclic voltammetry (CV) on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) surface. Poly(2-aminothiazole)/MWCNTs/GCE was used for determination of copper ions. The anodic peak currents of copper ions evaluated by differential pulse stripping voltammetry (DPSV) are linear with the concentrations in the range from 1.0 × 10−7 M to 2.0 × 10−5 M with a linear coefficiency of 0.9985. The detection limit is 2.0 × 10−9 M calculated for a signal-to-noise ratio of 3 (S/N =3). The proposed method was applied successfully to the determination of copper ions in drinking water, and the recovery was 96%.
More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more