Skip to main content

Nanoparticles of Pure and Substituted Maghemites (-MxFe2−xO3 Where M = Al, Cr, Mn, Zn and 0 ≤ x ≤ 1.3): A Comparative Study

Buy Article:

$113.00 plus tax (Refund Policy)

Magnetic nanoparticles of pure and substituted iron oxides are prepared by single step autocombustion or by wet chemical methods. The nanoparticles prepared by the first process had mixed phase of hematite and maghemite whereas the later essentially gives maghemite phase. XRD patterns and TEM micrographs of the pure and substituted maghemites samples suggest about their monophasic nature and inverse spinel structure. Further, the size of the particles for the above iron oxide samples was found to be in the range of 4 to 30 nm. Saturation magnetization value for the samples was observed to be varying with the type and the amount of substitution. For example, magnetization value initially increased and then decreased for Al- and Mn-substitutions but it continuously decreased for Cr- and Zn-substitutions. Contrary to the saturation magnetization value, the Curie temperature decreased continuously with increased substitutions irrespective of the type of substitutions. Due to higher magnetization value of Mn-substituted maghemite (for x = 0.2, 78 Am2/kg), it has higher heating ability and specific absorption rate compared to Al-substituted maghemite (for x = 0.07, 70 Am2/kg) and pure maghemite (62 Am2/kg).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: MAGHEMITE; MAGNETIC NANOPARTICLES; SATURATION MAGNETIZATION; SPECIFIC ABSORPTION RATE; SUBSTITUTED MAGHEMITE

Document Type: Research Article

Publication date: 2011-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more