Skip to main content

Effects of Cu-Doping on the Magnetic State of Zn0.9−xFe0.1CuxO

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Magnetization measurements were performed on a series of Zn0.9−xFe0.1CuxO samples (0 < x ∼ 0.1) prepared using solid state reaction and sol–gel methods. Although Cu is nonmagnetic, we found that increasing Cu content increases the saturation magnetization and enhances the hysteresis losses. Curie behavior of the susceptibility at high temperature indicates the presence of ferromagnetic exchange interaction. Moreover, we found that the exchange interaction and the molecular field coefficient are both ferromagnetic and greatly enhanced with Cu-doping; however, the Arrott-Belov-Kouvel plot did not reveal the presence of spontaneous magnetization down to 4.2 K.

Keywords: CURIE BEHAVIOR; EXCHANGE INTERACTION; FERROMAGNETIC; HYSTERESIS LOOP; MAGNETIC SEMICONDUCTORS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.2717

Publication date: March 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000003/art00114
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more