Skip to main content

Construct Hierarchical Superhydrophobic Silicon Surfaces by Chemical Etching

Buy Article:

$113.00 plus tax (Refund Policy)


We present a simple approach for preparing hydrophobic silicon surfaces by constructing silicon nanowire arrays using Ag-assisted chemical etching without low-surface-energy material modification. The static and dynamic wetting properties of the nanostructured surfaces and their dependence on etching conditions were studied. It was revealed that the surface topologies of silicon nanowire arrays and their corresponding wetting properties could be tuned by varying the etching time. Under optimized etching conditions, superhydrophobic surfaces with an apparent contact angle larger than 150° and a sliding angle smaller than 10° were achieved due to the formation of a hierarchical structure. The origin of hydrophobic behavior was discussed based on Wenzel and Cassie models. In addition, the effects of surface modification of Si surface nanostructures on their hydrophobic characteristics were also investigated.


Document Type: Research Article


Publication date: 2011-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more