Skip to main content

CdS Microspheres Composed of Nanocrystals and Their Photocatalytic Activity

Buy Article:

$105.00 plus tax (Refund Policy)

A simple and template-free solution phase synthesis method has been developed for the preparation of novel CdS hollow microspheres using cadmium nitrate and thioacetamide precursors. In this manuscript, we demonstrate that process parameters such as the reaction time, precursor ratio, and reaction temperature strongly influence the morphology of the final product. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction (XRD), Raman spectroscopy, high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray diffraction (EDX) analysis, X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-DRS). XRD analysis confirmed the cubic structure of the CdS microspheres, which has also been further supported by Raman spectroscopy. The HR-SEM measurements revealed the spherical morphology of the CdS microspheres which has been evolved by the oriented aggregation of the primary CdS nanocrystals. The TEM measurements confirmed the hollow shell-like structure of the spheres; the formation of their hollow interiors can be explained by the Ostwald ripening mechanism. UV-DRS studies showed that the band gap of the CdS microspheres increased with increasing cadmium-nitrate-to-thioacetamide ratio. Furthermore, studies of photocatalytic activity revealed that the synthesized CdS hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading methyl tert-butyl ether (MTBE) in aqueous solution under visible-light illumination. These results suggest that CdS microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light radiation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2011-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more