Skip to main content

Fabrication of Copper Sulfide Hierarchical Architectures with Tunable Morphologies and Sizes by Microwave-Biomolecular Assistance Method

Buy Article:

$113.00 plus tax (Refund Policy)


A facile microwave-biomolecular assistance method has been used to synthesize copper sulfide nanomaterials. In this process, the histidine as the directing and assembling agent plays an important role in the formation of the different hierarchical architectures. The morphologies and the sizes of the products can be tuned by adjusting the molar ratio of Cu2+/histidine and Cu2+/thiourea. The effect of other experiment parameters such as the reaction temperature, the power of microwave irradiation, and reaction time on the morphology and the size has been also discussed in detail. The possible reaction and growth mechanisms of the formation different hierarchical architectures are also discussed. In addition, the optical properties of these copper sulfides nanomaterials were investigated and the photocatalytic activity of different hierarchical architectures has been tested by the degradation of methyl orange (MO) under UV-light irradiation.


Document Type: Research Article


Publication date: 2011-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more