Skip to main content

Synthesis of Flake-Like MnO2/CNT Composite Nanotubes and Their Applications in Electrochemical Capacitors

Buy Article:

$113.00 plus tax (Refund Policy)


MnO2/CNT composite nanotubes with nanometer-sized flake-like MnO2 on carbon nanotubes' surfaces have been synthesized through an easy and efficient solution-based method. Similarly, Mn3O4/CNT composite nanotubes have also been synthesized by using the same method but different heat treatment process. The structures and compositions of the two types of composite nanotubes are characterized by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and nitrogen adsorption–desorption isotherms. Electrochemical measurements indicate that the MnO2/CNT composites nanotubes exhibit significantly enhanced supercapacitance performance compared with the Mn3O4/CNT composite nanotubes, the as-synthesized MnO2 nanoparticles and commercial MnO2. The possibilities of the enhanced properties are illustrated on the basis of analysis of XRD and X-ray photoelectron spectroscopy measurements. Our results presented here can give clear evidence of the superiority of nanocrystalline MnO2 to nanocrystalline Mn3O4 toward the applications as electrode materials in electrochemical capacitors.


Document Type: Research Article


Publication date: 2011-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more