Skip to main content

Enhanced Bio-Compatibility of Ferrofluids of Self-Assembled Superparamagnetic Iron Oxide-Silica Core–Shell Nanoparticles

Buy Article:

$113.00 plus tax (Refund Policy)


Self-assembled magnetic colloidal suspensions are sought after by material scientists owing to its huge application potential. The biomedical applications of colloidal nanoparticles necessitate that they are biocompatible, non-interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a controlled co-precipitation technique followed by a modified sol–gel synthesis. A plausible mechanism for the formation of stable suspension of SiO2-coated Iron Oxide nanoparticles with a size of about 9 nm dispersed in polyethylene glycol (PEG) is proposed. Core–shell nature of the resultant SiO2-Iron Oxide nanocomposite was verified using transmission electron microscopy. Fourier transform-infrared spectroscopy studies were carried out to understand the structure and nature of chemical bonds. The result suggests that Iron Oxide exist in an isolated state inside silica matrix. Moreover, the presence of silanol bonds establishes the hydrophilic nature of silica shell confirming the formation of stable ferrofluid with PEG as carrier fluid. The magnetic characterization reveals the superparamagnetic behavior of the nanoparticles with a rather narrow distribution of blocking temperatures. These properties are not seen in ferrofluids prepared from Iron Oxide nanoparticles without SiO2 coating. The latter suggests the successful tuning of the interparticle interactions preventing agglomeration of nanoparticles. Cytotoxicity studies on citric acid coated water based ferrofluid and silica-coated PEG-based ferrofluid were evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium chloride assay and it shows an enhanced compatibility for silica modified nanoparticles.


Document Type: Research Article


Publication date: March 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more