Skip to main content

Template-Free Synthesis and Supercapacitance Performance of a Hierachically Porous Oxygen-Enriched Carbon Material

Buy Article:

$113.00 plus tax (Refund Policy)


A hierarchically porous carbon material (HPCM) with plentiful pores from 0.5 to 700 nm and oxygen-enriched surfaces has been prepared starting from sodium alginate by using a sustainable and green process in which neither porous templates nor additional activation agents are utilized. While the macropores originate from the dissolution of in situ formed Na2CO3 particles during the carbonization of sodium alginate, the micropores and mesopores derive from the chemical activation process of Na ions in sodium alginate and the interspaces between the packed carbon nanoparticles, respectively. Raman spectrum and X-ray photoelectron spectroscopy reveal its nature of partial graphitization and oxygen-enriched functionalities. Electrochemical tests for electrochemical capacitors show that the present HPCM could deliver both higher energy and higher power densities than commercial activation carbon. The high energy density can be ascribed to the oxygen-enriched surfaces as well as the plentiful micropores of HPCM. While the former could provide large pseudo-capacitance, the latter would strengthen the electric double layer capacitance. On the other hand, the high power density could be attributed to the excellent meso/macroporosity of HPCM.


Document Type: Research Article


Publication date: 2011-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more