Skip to main content

Polymer Electrolytes Based on Grafted Inorganic Nanoparticles for Dye-Sensitized Solar Cells

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Inorganic nanoparticles such as TiO2 and SiO2 were grafted with poly(oxyethylene methacrylate) (POEM) and blended with poly(ethylene glycol) (PEG), 1-methyl-3-propylimidazolium iodide (MPII) and iodine (I2) to prepare polymer electrolytes for dye-sensitized solar cells (DSSC). The effects of the grafted nanoparticles on the coordination interactions and structures of electrolytes were investigated using FT-IR spectroscopy and differential scanning calorimetry (DSC). The energy conversion efficiencies were obtained as 3.3 and 2.9% for TiO2 and SiO2 based electrolytes, respectively. Good interfacial contact between the electrolyte and the electrodes was also confirmed by field emission scanning electron microscopy (FE-SEM).

Keywords: DYE-SENSITIZED SOLAR CELL; GRAFTED NANOPARTICLES; POLYMER ELECTROLYTE; SILICONE OXIDE (SIO2); TITANIUM OXIDE (TIO2)

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3337

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000002/art00158
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more