Skip to main content

Modulation of Physical Properties of Polyvinylsiloxane Impression Materials by Filler Type Combination

Buy Article:

$113.00 plus tax (Refund Policy)


Polyvinylsiloxanes (PVS), used as dental impression materials, were formulated with the variation of loading combination of six types of fillers including nano-sized fumed silica. The fillers were blended with three types of silicone polymers together with cross-linker and inhibitor in base paste and with plasticizer and platinum catalyst in catalyst paste. By replacing parts of crystalline quartz with other fillers, the setting time became much faster. The test group in which quarter of quartz was replaced with fumed silica showed the most ideal working and setting time for clinical use. There was a negative correlation between pH and setting time (p < 0.05). Combining the fumed silica was effective in increasing the viscosity, tensile strength and maximum% strain. Combining the diatomaceous earth reduced the setting time and maximum% strain, and dramatically increased the viscosity and tensile strength. The best modulation of physical properties of PVS material was possible by combining fillers during the formulation.


Document Type: Research Article


Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more