Skip to main content

Electrical Characteristics of Printed Ag Nanopaste on Polyimide Substrate

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We investigated the effects of sintering temperature on the microstructural evolution and electrical characteristics of screen-printed Ag patterns. A conducting paste containing 20 nm Ag nanoparticles (73 wt%) was screen printed onto a polyimide (PI) substrate and sintered at a temperature of 150, 200, 250 and 300 °C for 30 min. The microstructures of the sintered patterns were examined using field emission scanning electron microscopy (FESEM). The resistivity under the application of a DC signal decreased with increasing temperature. In the frequency range from 10 MHz to 20 GHz, the S-parameters of the sintered Ag conducting patterns were measured. The S-parameters indicated that the insertion losses at high frequency decreased with increasing sintering temperature due to the formation of interparticle necking after sintering.

Keywords: AG NANOPASTE; DIRECT PRINTING; ELECTRICAL CHARACTERISTICS; S-PARAMETER; SCREEN PRINTING

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3354

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000002/art00097
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more