Skip to main content

Energy Dissipation and Intrinsic Loss in Single Walled Carbon Nanotubes due to Anelastic Relaxation

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Based on the molecular dynamics simulation and an elastic shell model, we investigated the intrinsic loss under dynamic excitations in single walled carbon nanotube (SWCNT) due to the anelastic relaxation mechanism. We quantified the anelastic property of SWCNTs, i.e., the creep compliances, and showed them to be on the order of 1 (TPa−1) and sensitive to both the radius of SWCNT and the loading rate. Furthermore, our study showed that the time scale for a SWCNT to fully achieve its equilibrium elastic property through anelastic relaxation is on the order of nanosecond. This leads to significant intrinsic loss and damping for SWCNT resonators operating at the Gigahertz frequency range. Both the loss angle and quality (Q) factor of SWCNT were found to be strongly dependent on the load frequency. A dissipation peak and thus a low Q factor were observed in the Gigahertz frequency range. On the other hand, high Q factor and low dissipation were achieved in the range of low (<0.001 GHz) excitation frequency. The predicted influence of load frequency on the Q factor is in good agreement with the recent experimental observations.

Keywords: ANELASTIC RELAXATION; CARBON NANOTUBES; ENERGY DISSIPATION; QUALITY FACTOR

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3096

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2011/00000011/00000002/art00052
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more