If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effects of Nanoclay and Polyurethanes on Inhibition of Mild Steel Corrosion

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Sulfonated polyurethanes (SPU) were used as corrosion inhibitor for mild steel in acidic solution. The sulfonation of the >N–H groups of the urethane linkages was confirmed from Nuclear Magnetic Resonance (NMR) and Fourier Transform Infra Red (FTIR) spectroscopic techniques. The inhibition efficiency of sulfonated polyurethanes, prepared from two different routes, was investigated using different techniques. The effects of microstructure of polyurethane (PU), degree of sulfonation, time of immersion and temperature on the inhibition of corrosion were discussed. The disc-like nanoparticles, so-called nanoclay, either suspended or chemically attached to SPU chains (nanocomposites) dramatically enhanced the inhibition efficiency for mild steel in acidic medium. All the inhibitors retard the corrosion rate by getting themselves adsorbed on the corroding surface by following the Langmuir adsorption isotherm. The surface analysis of inhibited and uninhibited samples was performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Among the various inhibitors used, the nanocomposite of polyurethane was the most effective. Molecular modeling helped in determining the extent of packing of the SPU chains leading to better inhibition efficiency.

Keywords: ADSORPTION; MORPHOLOGY; NANOCOMPOSITES; POLYURETHANES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3070

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more