If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Modeling Particle Shape-Dependent Dynamics in Nanomedicine

Your trusted access to this article has expired.

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

One of the major challenges in nanomedicine is to improve nanoparticle cell selectivity and adhesion efficiency through designing functionalized nanoparticles of controlled sizes, shapes, and material compositions. Recent data on cylindrically shaped filomicelles are beginning to show that non-spherical particles remarkably improved the biological properties over spherical counterpart. Despite these exciting advances, non-spherical particles have not been widely used in nanomedicine applications due to the lack of fundamental understanding of shape effect on targeting efficiency. This paper intends to investigate the shape-dependent adhesion kinetics of non-spherical nanoparticles through computational modeling. The ligand–receptor binding kinetics is coupled with Brownian dynamics to study the dynamic delivery process of nanorods under various vascular flow conditions. The influences of nanoparticle shape, ligand density, and shear rate on adhesion probability are studied. Nanorods are observed to contact and adhere to the wall much easier than their spherical counterparts under the same configuration due to their tumbling motion. The binding probability of a nanorod under a shear rate of 8 s−1 is found to be three times higher than that of a nanosphere with the same volume. The particle binding probability decreases with increased flow shear rate and channel height. The Brownian motion is found to largely enhance nanoparticle binding. Results from this study contribute to the fundamental understanding and knowledge on how particle shape affects the transport and targeting efficiency of nanocarriers, which will provide mechanistic insights on the design of shape-specific nanomedicine for targeted drug delivery applications.

Keywords: ADHESION KINETICS; BROWNIAN DYNAMICS; IMMERSED FINITE ELEMENT METHOD; NANOMEDICINE; NANOROD

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3536

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more