Skip to main content

Memory Effects of Nonvolatile Memory Devices with a Floating Gate Fabricated Utilizing Ag Nanoparticles Embedded into a Polymethylmethacrylate Layer

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Nonvolatile memory devices based on a polymethylmethacrylate (PMMA) layer containing Ag nanoparticles were formed by using a spin coating method. High-resolution transmission electron microscopy images showed that Ag nanoparticles were randomly distributed in the PMMA layer. Capacitance–voltage (CV) curves for the Al/Ag nanoparticles embedded in a PMMA layer/p-Si(100) device at 300 K showed a hysteresis with a large flat-band voltage shift, indicative of the Ag nanoparticles acting as the charge storage in the memory device. The magnitude of the flat-band voltage shift for the memory devices increased with increasing Ag nanoparticle concentration. The operating mechanisms for the writing and the erasing processes for the Al/Ag nanoparticles embedded in a PMMA layer/p-Si(100) device are described on the basis of the CV results and electronic structures.

Keywords: AG NANOPARTICLE; C-V HYSTERESIS; NONVOLATILE MEMORY DEVICE; OPERATING MECHANISMS; PMMA

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2011.3169

Publication date: 2011-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more