Protein-Based Multi-Bit Biomemory Device Consisting of Various Metalloproteins on Self-Assembled 11-MUA Layer

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A multi-bit biomemory device was devised by introducing 4 different metalloproteins (azurin, cytochrome c, ferredoxin, myoglobin) to an electronic device using 11-MUA (11-mercaptoundecanoic acid) as the chemical linker. The immobilization of the 4 different self-assembled protein layers on a Au substrate via 11-MUA were confirmed by Raman spectroscopy and atomic force microscopy (AFM). The redox properties of these 4 different protein layers immobilized onto Au surface were assessed by cyclic voltammetry (CV). In addition, their memory functions were verified by chronoamperometry (CA). Based on these results, we demonstrated that a multi-bit biomemory concept could be realized using various metalloproteins as active materials.

Keywords: ATOMIC FORCE MICROSCOPY; BIOMEMORY; CYCLIC VOLTAMMETRY; NANOBIOCHIP

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2011.3272

Publication date: January 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more