Skip to main content

Improvement of Transmittance by Fabricating Broadband Subwavelength Anti-Reflection Structures for Polycarbonate

Buy Article:

$113.00 plus tax (Refund Policy)

We report on how to increase transmittance of a 0.2 mm thick polycarbonate (PC) film by periodic subwavelength anti-reflection structures in the visible spectral range. Subwavelength anti-reflection structures like moth-eyes are fabricated into the polycarbonate substrate itself by thermal nano-imprinting lithography (TH-NIL), which uses silicon stamps that have periodic structures such as gratings (lines and spaces) and pillared dots, and are fabricated by laser interference lithography (LIL) and transformer coupled plasma etching. To increase transmittance of a polycarbonate film, we control the periods and shapes of patterns, the number of patterned surfaces, and the overlapping direction of patterns that are fabricated into its surfaces. As a result of this, we show that average transmittance improves as the pattern period gets shorter and as both surfaces of the film are patterned. We also show that the spectrum range gets larger as the pattern period gets shorter and is determined by the longer pattern period in the case of designing a film to have different pattern period on its surfaces. The maximum average transmittance of a polycarbonate film increases up to approximately 6% compared to a bare sample in the 470–800 nm spectral range.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: LASER INTERFERENCE LITHOGRAPHY; POLYCARBONATE; SUBWAVELENGTH ANTI-REFLECTION; THERMAL NANO-IMPRINTING LITHOGRAPHY; TRANSMITTANCE

Document Type: Research Article

Publication date: 2011-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more