Skip to main content

An Effective Gold Nanotubes Electrode for Amperometric Biosensor

Buy Article:

$105.00 plus tax (Refund Policy)

A sensitive and effective amperometric glucose biosensor based on gold nanotubes electrode (GNTE) was investigated. Gold nanotubes (GNTs), which were prepared by electroless plating of the metal within the pores of nanoporous polycarbonate (PC) track-etched membranes, were filled into a hollow teflon cylinder to construct a GNTE. Glucose oxidase (GOD) was immobilized on the electrode via glutaraldehyde cross-linkage method. The electrochemical properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The km value of the immobilized glucose oxidase on GNTE was 0.47 mM. The biosensor showed a linear range from 0.4 to 11 mM with excellent sensitivity of 8.77 A cm−2 mM−1 and fast response time within 5 s.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BIOSENSOR; CYCLIC VOLTAMMETRY; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; GLUCOSE OXIDASE; GOLD NANOTUBES ELECTRODE

Document Type: Research Article

Publication date: 2010-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more