Skip to main content

DFT Studies of Low Concentration Substitutional Doping of Transition-Metals on Single-Walled Carbon Nanotube Surface

Buy Article:

$105.00 plus tax (Refund Policy)

Using first principles-density functional theory, a theoretical study of the electronic properties of (5, 5) armchair single-walled carbon nanotube doped with transitions metals (Fe, Co and Ni) is presented. The generalized gradient approximation was used for the exchange-correlation potentials. The energy cut-off of 500 eV was adopted in the study. The main features of electronic band structure and density of states are shown. A systematic comparison of the density of states as well as band structures of pure and doped SWCNT is made. The contribution of the different bands was analyzed from the total and partial density of states curves. These metals are used as catalysts during synthesis of single-walled carbon nanotubes and hence, the choice we have made. Where data is available, the results are compared with previous calculations and with experimental measurements.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 December 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more