Skip to main content

Enhancing the Photoelectric Conversion of Dye-Sensitized Solar Cell via Nitrogen-Doped Nanocrystalline Titania Electrode

Buy Article:

$113.00 plus tax (Refund Policy)


A high efficient dye-sensitized solar cell (DSC) was fabricated using nitrogen-doped nanocrystalline titania(TiO2) photoanode. X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), zeta potentials, nitrogen adsorption–desorption and elemental analysis experiments were employed to characterize the nitrogen-doped nanocrystalline TiO2 photoanode. An obvious enhancement of the optical absorption in the range of 380–550 nm was observed for nitrogen-doped TiO2, which was attributed to both the substitutional N and the chemisorbed N2 molecules. A conversion efficiency of 9.04% was obtained on the DSC based on nitrogen-doped TiO2 photoanode annealed in a flow of NH3 at 550 °C, with an increase of 15.6% improvement in comparison with pure TiO2 (7.82%). The mechanism for the enhanced photovoltaic performance was discussed.


Document Type: Research Article


Publication date: November 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more