Skip to main content

Enhanced Hydrogen Storage Capacity of Nanosized Copper Loaded Active Carbons Treated Under CO2

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

A kind of composites with nanosized Cu loaded on activated active carbons was prepared. The materials were characterized by X-ray diffraction (XRD) patterns, transmission electron microscope (TEM) and nitrogen adsorption. The highest surface area of 2746 m2/g was obtained for the optimized activated active carbon. TEM image and size distribution analyses show that the ball-like Cu(0) particles are dispersed homogeneously in the composites with diameters of 10∼30 nm. The electrochemical hydrogen storage properties were determined and an optimized discharge capacity of 605.5 mAh/g was gotten, which corresponds to 2.24 wt% of hydrogen uptake capacity.

Keywords: CO2 ACTIVATION; CU NANOPARTICLES; CU-ACTIVE CARBON COMPOSITES; HYDROGEN STORAGE

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.2766

Publication date: November 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2010/00000010/00000011/art00151
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more