Skip to main content

Computer Simulation of the Inclusion of Hydrophobic Nanoparticles into a Lipid Bilayer

Buy Article:

$113.00 plus tax (Refund Policy)


Understanding influences of nanoparticle (NP) inclusions into a lipid membrane is important in a variety of areas including biological systems and pharmacology. However, the inhomogeneous nature of lipid bilayers on a nanometer length scale complicates experimental studies of membrane inclusion. Here, we have performed coarse-grained molecular dynamics simulations aimed at the influence of the hydrophobic NPs inclusion into the lipid bilayer (dipalmitoylphosphatidylcholine or DPPC bilayer). The immersion of a nanoparticle into the hydrophobic core of the membrane has been observed in the simulation. To gain more insight in the inclusion, we have obtained free energy, entropy, enthalpy, and heat capacity profiles based on umbrella sampling calculations. These results show the inclusion process is driven by the co-action of entropy and enthalpy, which is consistent with some experimental and theoretical observations. Those results could be applied in the design of specific nanoparticles for various biomedical applications.


Document Type: Research Article


Publication date: 2010-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more