Skip to main content

Carbon Nanotubes Induce Secondary Structure Changes of Bovine Albumin in Aqueous Phase

Buy Article:

$105.00 plus tax (Refund Policy)

Interaction of nanomaterials to protein molecules is one of the most important issues to deeply understand the influences of the nanomaterials upon physiological processes and protein functions. So far most of investigations focused on the protein molecules adsorbed on the nanomaterials surface, less is known about those in the aqueous phase (not absorbed). In this work, luminescent spectroscopy analysis, circular dichroism measurement, atomic force microscopy, matrix-assisted laser desorption/ionization time of flight mass spectrometry, isoelectric focusing and sulfate polyacrylamide gel electrophoresis were used to investigate the influence of oxidized water-soluble multiwalled carbon nanotubes (CNT) dispersing in aqueous solution upon the structures of bovine serum albumin (BSA) through co-incubation. We focused on BSA molecules that stayed in the aqueous phase instead of those adsorbed by CNT. Experimental results show that the fractions of -sheet decreased from 33.3% to 29.8% and -turn increased from 2% to 5% in reference with native BSA. There was a slight increase of α-helix and a slight reduction of random coil. BSA molecules that had been encountered with CNT and were left in the solution formed a loose and flatten morphology on graphite substrates instead of their native tight and round morphology observed by AFM. The value of isoelectric point for BSA after exposed to CNT moved towards to a higher pH position compared with native BSA. All together, it was concluded that the oxidized water-soluble multiwalled carbon nanotubes not only adsorb bovine serum albumin molecules to their surface, but also induces albumin molecules in the aqueous solution undergo secondary structure changes, which lead to a conformation change.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2010-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more