If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

High-Resolution Nanosphere Lithography (NSL) to Fabricate Highly-Ordered ZnO Nanorod Arrays

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Here we report our successful development of a high-resolution, low-cost, simple and convenient technique based on nanosphere lithography (NSL) to fabricate large-scale periodic gold nanoparticle pattern, which is the most common catalyst material in the synthesis of nanostructure and also a feature material for surface plasmon resonation (SPR) research. In order to improve lithography resolution by PS nanosphere self-assembling monolayer (SAM), we adapted the following steps in our fabrication strategy. The original continuous etching by oxygen plasma was replaced by multiple short treatments to avoid heating effect. In addition, direct oxidation was utilized to remove the nanospheres instead of the supersonic process. Using the obtained Au nanoparticle pattern, ZnO nanorod arrays with an average diameter of 50 nm were easily obtained by 600 nm PS nanospheres SAM, which was even smaller than the minimum size by utilizing 400 nm nanospheres SAM in the previous work. Thus, we succeeded in the fabrication of highly-ordered ZnO nanorod arrays with largely tunable diameter by this higher-resolution nanosphere lithography. We also present X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and Raman results of our as-grown samples, indicating great crystallization quality and optical property.

Keywords: ARRAYS; HIGH-RESOLUTION; NANOSPHERE LITHOGRAPHY (NSL); SELF-ASSEMBLING; ZNO NANOROD

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.2847

Publication date: November 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more