Skip to main content

First-Principles Study of NO Adsorbed Ni(100) Surface

Buy Article:

$113.00 plus tax (Refund Policy)


The geometric, electronic and magnetic properties of NO molecules adsorbed on the Ni(100) surface are investigated by the first-principles calculation on the basis of the density functional theory (DFT). The NO molecules are predicted to be chemisorbed at hollow site with an upright configuration at 0.125 ML and 0.5 ML coverages. After adsorption, the magnetic moment is significantly suppressed for surface Ni atom and almost quenched for NO molecule. This behavior can be reasonably explained by the difference of the backdonation process between the spin-up and spin-down electronic states, which is demonstrated by the spin-resolved differential charge density map.


Document Type: Research Article


Publication date: 2010-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more