Skip to main content

Percolation Effect on the Conductivity of Single-Walled Carbon Nanotube Network

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

In this paper, we report that the resistance of the SWNT network grown by chemical vapor deposition has a close relationship with the applied current in the range of microampere to milliamperes. At the temperature of 1.5 K, the resistance of SWNT network will decrease with an increasing current. When the applied current is larger than 1 mA, the resistance tends to saturate gradually. At temperature of 100 K, the resistance remains stable and does not depend on the current. The mechanism of this phenomenon is attributed to the series-parallel connection structure of SWNT network, which forms a conducting network with the percolation probability modulated by the applied current. At low temperature, the resistance of the SWNT network will decrease because the percolation probability becomes large with an increasing current. While at high temperature, the percolation probability remains constant due to thermally assisted transfer effect and thus the resistance is not affected by the applied current.

Keywords: PERCOLATION PROBABILITY THRESHOLD; SINGLE-WALLED CARBON NANOTUBE NETWORK; THERMALLY ASSISTED TRANSFER

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2010.2880

Publication date: 2010-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more