Skip to main content

Corrosion Behaviors of Amorphous and Nanocrystalline Fe-Based Alloys in NaCl Solution

Buy Article:

$113.00 plus tax (Refund Policy)


Amorphous Fe73.5Si13.5B9Nb3Cu1 alloy was prepared by the chill block melt-spinning process and nanocrystalline Fe73.5Si13.5B9Nb3Cu1 alloy was obtained by annealing. The crystallization behaviors were analysed by DSC, XRD and TEM. The electrochemical corrosion behaviors in different annealed states were performed by linear polarization method and electrochemical impedance spectroscopy in 3.5% NaCl solution. The results show that the crystallization of amorphous alloy occurs in the two steps. Some nanometer crystals appear when annealing in 550 °C and 600 °C, respectively with grain size 13 nm and 15 nm. The nanocrystalline alloy has a tendency to passivation and lower anodic current density than amorphous alloy. It indicates that nanocrystalline alloy has a higher corrosion resistance. Amorphous Fe73.5Si13.5B9Nb3Cu1 alloy consisted of only single semi-circle. When the alloy was annealed in 600 °C, its EIS consisted of two time constants, i.e., high frequency and low frequency capacitive loops. The charge transfer reaction resistances increases as annealing temperature rises.


Document Type: Research Article


Publication date: November 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more