Skip to main content

Performance Improvement of Zinc Oxide Photoanode-Based Dye-Sensitized Solar Cells by Multi-Walled Carbon Nanotube

Buy Article:

$113.00 plus tax (Refund Policy)

Unique electrical and surface-to-volume properties of carbon nanotubes have made these conductive molecules highly attractive in many applications. In this work, the influence of multi-walled carbon nanotubes into a zinc oxide active layer of dye-sensitized zinc oxide solar cell has been investigated. With this method, a significant improvement in the performance of the solar cell has been achieved. Compared to the typical zinc oxide photoelectrochemical cells, the photocurrent–voltage characteristics of the fabricated cell containing 0.05 percent by weight of carbon nanotubes in the metal oxide film displayed a higher short-circuit photocurrent, consequently caused an increase of the solar-to-electricity conversion efficiency by a factor of approximately 1.4. Further increase of the conductive carbon material resulted in a decrease of the energy conversion of the photovoltaic cell. The enhancement of the energy conversion at this optimum carbon nanotube loading may be attributed to the dye-adsorption ability and the electrochemical activity of the composite photoanodes. The fabricated photovoltaic cells with the highest efficiency exhibited the maximum dye adsorption intensity and the minimum charge transfer resistance, as measured by ultraviolet-visible spectroscopy and electrochemical impedance spectroscopy, respectively.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2010-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more