Skip to main content

Reduction of Lossy Surface Waves in a Double Metal Films Structure

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

It has been demonstrated that the spontaneous emission rate can be enhanced dramatically by Surface Plasmon Polaritons (SPP) due to large density of states for photon near the SPP resonance frequency and very small mode volume. Some valuable works have been reported to verify such effect with a single metal layer above the semiconductor active layer. However, huge power dissipating to "lossy surface wave (LSW)" mode occurs in such monolayer structure because the enhancement decays with the distance away from the interface exponentially and therefore the active layer should be close enough to the metal film. LSW will convert the energy into heat and make the monolayer structure hardly be applied to obtain large enhancement of spontaneous emission. In this paper, we propose a double-layer structure with two metal films at the top and bottom of semiconductor layer. By assuming the dipole (classical model for the source) at the center of the active layer, which means the distance between the dipole and the interfaces is half of the thickness of active layer, the enhancements of spontaneous emission were calculated and analyzed for both monolayer and double-layer structures with different thickness of the metal film and active layer. The calculation results show that, for the double-layer structure, the critical thickness of the active layer, where the power to SPP exceeds the power to LSW, is much thinner than that in the monolayer structure. This means that the active layer can be set closer to the metal film in the double-layer structure without worrying about the LSW. Therefore, larger enhancement of spontaneous emission rate and higher available energy can be achieved simultaneously.

Keywords: LOSSY SURFACE WAVE; SPONTANEOUS EMISSION RATE; SURFACE PLASMON POLARITONS

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2010.2902

Publication date: 2010-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more