Skip to main content

Nanoparticle Surface as Activation Site

Buy Article:

$105.00 plus tax (Refund Policy)

The immense surface-to-volume (S/V) ratio in nanoparticles leads to large surface energy density. These high densities play the role of sites for activities that are not triggered in bulk materials. Here we present some examples of such distinctive activities taking place at nanoparticle surfaces. Our first example involves the morphological changes in silkworm (Bombyx mori L.) nuclear polyhedrosis virus (BmNPV) brought about by lipophilic amorphous silica nanoparticles (LASN). Microscopy studies show that nanoparticles severely alter the structure of the virus envelope by a 'deflation' of the viral polyhedron and formation of elongated structures. The second example shows the spatial variation in aggregation potential with temperature, for dodecanethiol-capped Au nanoparticles on an amorphous polystyrene film surface. We find that on increasing the temperature from 32 °C to 50 °C the aggregating potential becomes almost completely confined to the film surface, whereas going over to 100 °C the confining potential is overcome and out-of-plane growth takes place. A tentative and qualitative explanation has been attempted.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2010-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more