Skip to main content

Microstructure and Formation of Copper Oxide in the Cu Electro-Polishing Process

Buy Article:

$113.00 plus tax (Refund Policy)


In this study, the formation of Cu oxide on Cu film is studied during Cu electropolishing in a phosphoric acid-based electrolyte with various Cu ion concentrations, from 2.28% to 10.08%. In cyclic voltammetry measurement, the maximum current density of the anodic peak (Imax) decreases from 38.87 to 28.13 mA/cm2 with increasing Cu ion concentration, indicating that an oxide film forms on the Cu film surface and the thickness increases with Cu ion concentration. Microstructures and crystallography of the oxide film are examined by transmission electron microscopy, which confirms the increase of the oxide film thickness due to the high Cu ion concentration in a H3PO4 electrolyte. Three types of Cu oxide are detected using X-ray photoelectron spectroscopy, namely Cu2O, Cu(OH)2, and CuO. With a Cu-ion electrolyte concentration of less than 6.99%, Cu(OH)2 is dominant, while at higher Cu-ion concentrations, CuO predominates. The formation of CuO protects Cu from corrosion in the electrolyte with the Cu-ion concentration of over 6.99%.


Document Type: Research Article


Publication date: November 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more