Skip to main content

Ultraviolet Lasing Action in ZnO Nanosheets

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We report room-temperature ultraviolet lasing action in large quantities of uniform multilayer ZnO nanosheets grown by a vapor-transport method via thermal evaporation of Zn powder. An excellent multimode lasing emission at a center wavelength of 390 nm with a mode linewidth less than 0.33 nm occurs above an excitation threshold of 8 mJ pulse−1 cm−2. The observed multimode lasing action may be attributed to microcavity effect and low concentration of defects in the nanosheets. We believe that the single-mode lasing emission can be obtained by growing completely uniform nanosheets. ZnO nanosheet is an attractive candidate as gain medium to realize ultraviolet semiconductor diode lasers.

Keywords: MICROCAVITY; ULTRAVIOLET LASER; ZNO NANOSHEETS

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2010.2635

Publication date: 2010-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more