Skip to main content

Growth and Properties of Ultra-Violet Emitting Aligned Zinc Oxide Nanocones with Hexagonal Caps

Buy Article:

$105.00 plus tax (Refund Policy)

Ultraviolet-emitting, single-crystalline aligned zinc oxide (ZnO) nanocones with hexagonal caps were grown on silicon substrate via simple non-catalytic thermal evaporation process. High-purity metallic zinc powder and oxygen were used as source materials for zinc and oxygen, respectively. The detailed structural characterizations confirmed that the formed products are single-crystalline, possess a wurtzite hexagonal phase and grown along the c-axis direction. Raman-active optical-phonon E high 2 mode at 437 cm−1 with sharp and strong UV emission at 385 nm in room-temperature photoluminescence (PL) spectrum demonstrated that the as-grown ZnO nanocones with hexagonal caps possess good-crystal quality with the excellent optical properties. Finally, a plausible growth mechanism for the formation of as-grown ZnO nanocones with hexagonal caps was also proposed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ALIGNED NANOSTRUCTURES; RAMAN-SCATTERING; ULTRA-VIOLET EMITTING; ZNO NANOCONES WITH HEXAGONAL HEADS

Document Type: Research Article

Publication date: 01 October 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more