Skip to main content

Electrical Characterization of Multi-Walled Carbon Nanotubes

Buy Article:

$105.00 plus tax (Refund Policy)

Electrical characteristics of multi-walled carbon nanotubes (MWNTs) grown by chemical vapor deposition have been investigated as a function of the bias voltage, nanotubes length and temperature, in 2 and 4 terminal configurations. Nanotubes were deposited over metal electrodes using ac dielectrophoresis method. For better contacts between the nanotubes and electrodes, Ni and Pd films were deposited by an electroless deposition technique. Differential conductance was found to rise considerably with bias, and this effect was more pronounced for Ni. Using 2 and 4 terminal configurations, electrical resistance measurements for individual MWNTs were performed, and the results were interpreted using the model of nanotube as a resistive transmission line, where current at low bias flows mainly through the two outermost shells.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2010-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more