Skip to main content

Highly Sensitive Tin Oxide Hollow Microspheres and Nanosheets to Ethanol Gas Prepared by Hydrothermal Method

Buy Article:

$113.00 plus tax (Refund Policy)


In this study, we synthesized tetragonal-phase SnO2 with a variety of well-crystallized morphologies as solid microspheres, hollow microspheres and mixture of hollow microspheres and nanosheets via the hydrothermal method. The synthesized samples were characterized with XRD, SEM, and BET. SnO2 hollow microsphere structures have been hydrothermally synthesized by using urea and SnCl2 as raw materials. With the addition of cetyltrimethylammonium bromide (CTAB), nanostructures with morphologies of hollow microspheres and nanosheets were obtained. Also, when CTAB was added in the reaction solution without urea, SnO2 microsphere with a solid interior composed of nanoparticles were obtained. A possible formation mechanism of these samples was briefly discussed. The gas sensing properties of sensors based on these samples were investigated. The result revealed that sample with morphology of hollow microsphere and nanosheet calcined at 600 °C showed the highest sensitivity to ethanol due to the special morphology and absence of SnO phase.


Document Type: Research Article


Publication date: 2010-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more