Skip to main content

Optical Protein Modulation via Quantum Dot Coupling and Use of a Hybrid Sensor Protein

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers of alternating monolayers of bR, PDAC and QD's on a conductive ITO substrate. The construction of multilayer systems was directly monitored by measuring the unique A570 nm absorbance of bR, as well as QD fluorescence emission. Both of these parameters displayed a linear relationship to the number of monolayers present on the ITO substrate. The photovoltaic response of bilayers of bR/PDAC was observed over a range of 3 to 12 bilayers and the ability to efficiently create an electrically active multilayered substrate composed of bR and QDs has been demonstrated for the first time. Evaluation of QD fluorescence emission in the multilayer system strongly suggests that FRET coupling is occurring and, since the I-SAM technique provide a means to control the bR/QD separation distance on the nanometer scale, this technique may prove highly valuable for optimizing the distance dependent energy transfer effects for maximum sensitivity to target molecule binding by a biosensor. Finally, preliminary studies on the production of a sensor protein/bR hybrid gene construct are presented. It is proposed that the energy associated with target molecule binding to a hybrid sensor protein would provide a means to directly modulate the electrical output from a sensor protein/bR biosensor platform.

Keywords: BACTERIORHODOPSIN; BIOSENSOR; FRET; I-SAM; MALTOSE BINDING PROTEIN; NANOTECHNOLOGY; QUANTUM DOTS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.2612

Publication date: September 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2010/00000010/00000009/art00075
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more