If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Crack Formation During Post-Treatment of Nano- and Microfibres Prepared by Sol–Gel Technique

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We report on the method of TiO2 nano- and microfibres preparation and their cracking during processing and post-treatment. Nano- and microfibres were fabricated by drawing from viscous alkoxide based oligomeric concentrate precursors with the following exposure into an atmosphere of 30–50% humidity. The fibres microstructure was analyzed with TEM, solid state NMR, X-ray diffraction tools, and AFM. Experiments on crack formation in TiO2 microfibres proved that fibres with diameter larger than 10 micron are fractured for chosen post-treatment regimes. In theoretical considerations sol–gel produced and thermally treated microfibres are modeled as core/shell structures. It is suggested that the formation of fibres starts via solidification of liquid jet through the appearance of a rigid solid shell, which reveals tensile mechanical stresses because of material shrinkage. The effect of post-treatment is taken into account by additional densification of the fibre surface layer. The stress intensity factor KI is calculated for the model core/shell structures and the dependence of KI on the fibre diameter is demonstrated. The results of modeling qualitatively confirm experimental data of microfibre cracking above a certain threshold diameter.

Keywords: CRACKING; NANO- AND MICROFIBRES; SHRINKAGE; SOL-GEL TECHNIQUE

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.2562

Publication date: September 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more