Skip to main content

NIR Femtosecond Laser Induced Hyper-Rayleigh Scattering and Luminescence from Silver Nanoprisms

Buy Article:

$113.00 plus tax (Refund Policy)


The nonlinear response of silver nanoprisms (edge length 40 ± 5 nm and thickness 4.5 ± 0.5 nm) was studied by exciting with NIR femtosecond pulses (780–880 nm). These nanostructures were observed to generate hyper-Rayleigh scattering (HRS) and broadband luminescence. While HRS showed the expected second order power dependence, the luminescence was observed to follow a third order excitation power dependence. Both HRS and luminescence were observed to be dipolar in nature. The first hyperpolarizability of the nanoprisms was found to be an order of magnitude higher than ∼15 nm sized nanospheres.


Document Type: Research Article


Publication date: 2010-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more