Zinc Oxide Epitaxial Thin Film Deposited Over Carbon on Various Substrate by Pulsed Laser Deposition Technique

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Zinc Oxide (ZnO) is a promising candidate material for optical and electronic devices due to its direct wide band gap (3.37 eV) and high exciton binding energy (60 meV). For applications in various fields such as light emitting diode (LED) and laser diodes, growth of p-type ZnO is a prerequisite. ZnO is an intrinsically n-type semiconductor. In this paper we report on the synthesis of Zinc Oxide–Carbon (ZnO:C) thin films using pulsed laser deposition technique (PLD). The deposition parameters were optimized to obtain high quality epitaxial ZnO films over a carbon layer. The structural and optical properties were studied by glazing index X-ray diffraction (GIXRD), photoluminescence (PL), optical absorption (OA), and Raman spectroscopy. Rutherford backscattering spectroscopy (RBS), scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS) and atomic force microscopy (AFM) were employed to determine the composition and surface morphology of these thin films. The GIXRD pattern of the synthesized films exhibited hexagonal wurtzite crystal structure with a preferred (002) orientation. PL spectroscopy results showed that the emission intensity was maximum at ∼380 nm at a deposition temperature of 573 K. In the Raman spectra, the E2 phonon frequency around at 438 cm−1 is a characteristic peak of the wurtzite lattice and could be seen in all samples. Furthermore, the optical direct band gap of ZnO films was found to be in the visible region. The growth of the epitaxial layer is discussed in the light of carbon atoms from the buffer layer. Our work demonstrates that the carbon is a novel dopant in the group of doped ZnO semiconductor materials. The introduction of carbon impurities enhanced the visible emission of red–green luminescence. It is concluded that the carbon impurities promote the zinc related native defect in ZnO.

Keywords: OPTICAL AND MORPHOLOGICAL STUDY; PLD TECHNIQUE; STRUCTURAL; ZNO:C THIN FILMS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.2478

Publication date: September 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more