Skip to main content

Crystalline Core/Shell Si/SiO2 Nanotubes Formed via Interfacial Stress Imbalance

Buy Article:

$105.00 plus tax (Refund Policy)

Crystalline core/shell Si/SiO2 nanotubes (NTs) with outer diameters of 130–220 nm and lengths of ∼1 μm have been synthesized using thermal evaporation. High resolution scanning electron microscopy reveals that the NT formation stems from the intrinsic interfacial stress imbalance in the strained Si/SiO2 bilayered film, consequently leading to NTs with different orifice levels. The NT diameters depend strongly on the bilayer film thicknesses and crystal orientations of the Si and SiO2 layers. A modified Timoshenko formula is derived to calculate the dependence of the tube diameter on the bilayer film thickness. The obtained results are consistent well with experimental data.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: FORMATION MECHANISM; SI/SIO2 NANOTUBES

Document Type: Research Article

Publication date: 2010-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more