Skip to main content

Compression Behaviour of Thick Vertically Aligned Carbon Nanotube Blocks

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Blocks of vertically aligned multiwall carbon nanotubes were prepared by thermal chemical vapor deposition starting from camphor and ferrocene precursors. The blocks, having a thickness of approximately 2 mm and composed of nanotubes with diameter ranging between 30 and 80 nm, were submitted to compression tests. The results were analyzed accordingly with a simple model consisting in a parallel array of nanotubes under compression and bending suffering microscopic instability and compaction. The model mostly fits the experimental stress-strain curves, with a small deviation attributed to dissipative phenomena, such as frictional forces and nanotube wall breakage.

Keywords: ALIGNED CNTS; CVD; MECHANICAL PROPERTIES; NANO TUBE DEVICES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2010.2187

Publication date: July 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2010/00000010/00000007/art00017
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more