The Effect of Nanotubular Titanium Surfaces on Osteoblast Differentiation

$113.00 plus tax (Refund Policy)

Buy Article:


The biological response of fetal rat calvarial cells on a TiO2 nanotubular surface (Ti-NT) was evaluated by cell viability assay, alkaline phosphatase (ALP) activity and reverse transcription polymerase chain reaction (RT-PCR) analysis. The cell viability assay showed no significant difference between the Ti-NT and smooth titanium surfaces (Ti-S). Ti-NT had better cellular responses with regard to the ALP activity and bone-associated markers, such as bone sialoprotein and osteocalcin mRNA than Ti-S. These results suggest that Ti-NT stimulate the differentiation into osteoblasts of fetal rat calvarial cells, potentially contributing to rapid osseointegration.


Document Type: Research Article


Publication date: May 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more