Skip to main content

Enhancement of the Memory Effects for Nonvolatile Memory Devices Fabricated Utilizing ZnO Nanoparticles Embedded in a Si3N4 Layer

Buy Article:

$113.00 plus tax (Refund Policy)


ZnO nanoparticles embedded in a Si3N4 layer by using spin-coating and thermal treatment were fabricated to investigate the feasible applications in charge trapping regions of the metal/oxide/nitride/oxide/p-Si memory devices. The magnitude of the flatband voltage shift of the capacitance–voltage (CV) curve for the Al/SiO2/ZnO nanoparticles embedded in Si3N4 layer/SiO2/p-Si memory device was larger than that of Al/ZnO nanoparticles embedded in SiO2 layer/p-Si and Al/SiO2/Si3N4/SiO2/p-Si devices. The increase in the flatband voltage shift of the CV curve for the Al/SiO2/ZnO nanoparticles embedded in Si3N4 layer/SiO2/p-Si memory device in comparison with other devices was attributed to the existence of the ZnO nanoparticles or the interface trap states between the ZnO nanoparticles and the Si3N4 layer resulting from existence of ZnO nanoparticles embedded in the Si3N4 layer.


Document Type: Research Article


Publication date: May 1, 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more