Skip to main content

Electroluminescence Property of Highly Soluble Ir(III) Complex Utilized by Various Hole Blocking Layers in Polymer Light Emitting Diodes

Buy Article:

$113.00 plus tax (Refund Policy)

The tris(2-phenylpyridine)iridium(III) [Ir(ppy)3] is a well known highly efficient green light-emitting phosphorescent guest dye dopant, but its relatively low solubility has been obstructing it to be used in polymer light-emitting diodes (PLEDs). According to our latest reports the solubility of Ir(ppy)3 complexes with the carbazole ligands, i.e., Ir(Czppy)3, was improved significantly in organic solvents, and was sufficient to be used in soluble process. This highly soluble Ir(Czppy)3 complex showed remarkably higher photoluminescence characteristics than conventional Ir(ppy)3, but it showed similar or comparably better electroluminescence (EL) characteristics, when the PLED was composed by widely used conventional hole blocking layer (HBL) and electron transport layer; 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline and tris(8-hydroxyquinoline)aluminum, respectively. In this report, we applied various HBLs to improve the EL characteristics of soluble Ir(III) complex based phosphorescent PLEDs. The PLEDs utilized by the wide band-gap 3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole demonstrated highly improved the current and the external quantum efficiency of 17.61 cd/A and 6.42%, respectively.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: HIGHLY SOLUBLE IR(III) COMPLEX; HOLE BLOCKING LAYER; IR(CZPPY)3; IR(PPY)3; PHOSPHORESCENT

Document Type: Research Article

Publication date: 2010-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more