Skip to main content

Effect of Nanoparticle Coating on the Thermal Conductivity of Microporous Thermal Insulations

Buy Article:

$105.00 plus tax (Refund Policy)

Microporous thermal insulations were prepared from mixtures of nano-sized fumed silica, micron-sized fibers and opacifier particles. Those micron-sized particles were dry coated with nano-sized fumed silica particles by mechanical process using a compressive-shear type mill. The effect of nanoparticle coating on the thermal conductivity of the insulation media was investigated using a hot-wire method. Effect of nanoparticle coating was found to be more pronounced for the insulation composed of fumed silica and fiber than for the one composed of fumed silica, fiber and an opacifier. By adding 15% SiC or TiO2 opacifier, the thermal conductivity of the insulation samples could be lowered to 0.08 Wm−1K−1 at temperature range of 805∼817 °C. The temperature dependent thermal conductivity of the sample containing glass fiber did not exhibit any remarkable changes compared to the one containing ceramic fiber.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2010-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more