Skip to main content

Nanostructured Silicon Based Thin Film Transistors Processed in the Plasma Dark Region

Buy Article:

$105.00 plus tax (Refund Policy)

Nanostructured silicon (na-Si:H) thin films were fabricated using plasma enhanced chemical vapour deposition (PECVD) technique under high silane hydrogen dilution and a discharge frequency of 27 MHz, where the substrate was located in the dark region of the plasma, protected by a grounded metal grid. By not exposing the growth surface directly to the plasma we avoid the silicon growth surface to sustain a high ion bombardment leading to a less defective surface and highly compact films. The intrinsic films grown under these conditions were used to produce the channel region of thin film transistors (TFTs) with a bottom gate staggered configuration, integrating different dielectric layers. The devices produced exhibit a field effect mobility close to 1.84 cm2V−1s−1, threshold voltage around 2 V, on/off ratio above 107 and sub-threshold slope below 0.5 V/decade, depending on the dielectric used.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: NANOSTRUCTURED SILICON; PECVD; TFTS

Document Type: Research Article

Publication date: 2010-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more